
Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2023/2024 

 

CNN-Attention Autoencoder for Image Compression 
 

Ilham Prasetyo Wibowo (13520013) 

Program Studi Teknik Informatika 

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 

E-mail (gmail) : 13520013@std.stei.itb.ac.id  

 

 
Abstract— Image compression is the process of reducing the 

size of an image without compromising its quality significantly. 

Image compression is crucial for data transmission and 

managing data size. This paper explores the use of a CNN-

Attention autoencoder, to selectively reduce the size of an image 

to lower size but maintaining more quality in some areas. 
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I.  INTRODUCTION 

In this digital era, the growth of visual data, especially 
images, has given rise to the challenges associated with storage 
and processing. The volume of image data imposes a 
significant burden on storage capacities. Image compression is 
a technique to efficiently manage image size by reducing 
image size but not losing too much information of the image.  

Deep learning is a type of machine learning algorithm 
which consists of interconnected multiple layers. 
Convolutional Neural Networks (CNNs) is a type of deep 
learning with the ability to process grid-like data. Hence, 
CNNs are effectively used for image related tasks. The notable 
difference between CNNs and ANNs is CNNs are primarily 
used for learning patterns within images [1].  

Autoencoders are a specific type of neural network, 
designed to encode the input into a compact and meaningful 
representation, and then decode it back to the input [2]. 
Autoencoders facilitate unsupervised learning and capturing 
the main features of an input, providing means to enable it as a 
compression method for images. 

The CNN-Attention autoencoder is a model to capture the 
features of the image and reconstruct it back to its original 
representation. The additional attention mechanism contributes 
to selectively emphasizing some areas to perform more 
compression and other areas with less quality reduction. The 
idea is simple, first we encode the image into its compact 
representation, then use the attention mechanism to emphasize 
some parts of the image, and finally approximately reconstruct 
the image. 

II. THEORETICAL BACKGROUND 

A. Digital Image 

Images we see in the real world are analog visual 
information that our brain perceives. Digital images are 
representation of images in discrete form. Digital images 

comprised of pixels where each pixel holds the color 
information. Images are usually represented in two-
dimensional grids. Pixels are the fundamental building blocks 
of images. They can represent a lot of information depending 
on the image. Following this, images usually hold a lot of 
information resulting in a higher burden for storing the image. 

B. Image Compression 

Image files, especially high-resolution ones, contain vast 
amounts of data. Storing such data requires significant storage 
space. Image compression addresses that problem by reducing 
the size of the image without losing significant quality. The 
goal of image compression is to reduce spatial storage needs 
and represent images with near similar quality but with more 
compact representation. 

Applications of image compression is as follows:  

1. Reducing the storage needed to store the image in the 
secondar storage.  

2. Reducing the cost of transmitting images in data 
communication. 

There are two primary types of image compression:  

1. Lossless compression 

This compression method retains all information of 
the image, pixel-by-pixel when compressing the file. 
It uses algorithms to remove the redundancy without 
losing any loss of information. 

2. Lossy compression 

This type of compression reduces file size by losing 
some information of the data. Lossy compression can 
get a very low compression ratio compared to lossless 
compression methods. But, this method loses some 
quality from the image. 

There are lots of different compression algorithms. Some 
compression algorithms frequently used in the image 
compression are as follows:  

1. Huffman Encoding 

This method is an example of a lossless compression 
algorithm. It is based on the greedy algorithm. At its 
core, Huffman encoding algorithm encodes the 
frequently showed pixel with smaller bit length, and 
fewer bit length for other pixel values progressively. 
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2. Run Length Encoding 

The run length encoding method is another common 
example of lossless compression algorithm. It 
represents the image as value pairs of pixel value and 
the length of the pixel present in the image 
continuously.  

3. Joint Photographic Experts Group (JPEG) 

JPEG is a standard compression algorithm for images 
since 1992. It is a type of lossy compression algorithm. 
JPEG compression contains a lot of stages including 
quantization, DCT, and Huffman encoding. 

C. Neural Networks 

Neural Networks are type of machine learning algorithms 

which consists of many simple, connected processors called 

neurons [2]. Each of the neurons produces real activations. 

The neural network architecture is inspired by how the human 

brain works. In neural networks, the model learns by flowing 

the information from the input layer to the output layer in a 

progressive way. After obtaining the output, it performs a 

backward computation to adjust the weights of the neurons. 

The backward computation is called backpropagation.  

Deep learning is a type of machine learning that uses 

multiple layers (hence the name deep) to extract features and 

learn the information from the input. Deep learning models 

can have hundreds of layers within a model. 

D. Deep Learning for Computer Vision 

Deep learning is a suitable architecture for computer vision 

tasks such as image classification, recognition, or object 

detection. It is suitable for computer vision due to following 

reasons:  

1. Easy access to large, labeled dataset. 

2. Availability of highly performant GPU to increase 

computing power. 

3. There are pretrained models built by experts.  

 

E. Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are popular deep 

learning algorithms, mainly used for inputs with grid-like 

topology. One of the examples of grid-like topology input is 

image. CNNs are an architecture for deep learning that learns 

directly from input data utilizing filters, discarding the need of 

manual feature extraction. 

 
Figure 1. CNN in Image Classification [4]  

 

CNNs mainly comprised of three main elements, 

convolutional layers (including activation functions), pooling 

layer, and fully connected layer. Convolutional layer performs 

convolution to the input image with some defined filters. Each 

filter produces a single feature map. We can change some 

hyperparameters that affect the output feature map with 

number of filters, stride, and padding.  

 
Figure 2. Illustration of Convolution [4] 

 

Pooling layers also performs convolution on the image. 

But, in the pooling layer, there is no filter used to convolve. 

Instead, it reduces the size of the input by some defined 

parameters. There are two types of pooling:  

1. Max pooling, returning the maximum value within a 

window kernel. 

2. Average pooling, returning the average value within 

the window kernel. 

 
Figure 3. Pooling Illustration [4] 

 

The convolutional layers and pooling layers are mainly used 

for feature extraction. To classify images, CNNs used fully 

connected layers. The overall architecture of CNNs is 

illustrated in the following figure. 

 
Figure 4. CNN General Architecture [1]  
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F. Autoencoders 

Autoencoders are a specific type of neural network, 

designed to encode the input into a compact and meaningful 

representation, and then decode it back to the input [2]. 

Autoencoder consists of an encoder and decoder, working 

together to reconstruct input data. 

Autoencoder models are trained with unlabeled data. In 

image case, it can train with only images without any 

supervision required. It performs encoding to a compact 

representation of the input, then performs decoding to 

reconstruct the input. In the training procedure, it compares 

the output of decoding and the input, then computes some 

training loss, and updates its weights. Autoencoders can be 

used as compression method by learning image’s compressed 

representation. One of the examples of autoencoders is 

denoising autoencoders. The example of denoising 

autoencoders is in the following figure.  

 
Figure 5. Denoising Autoencoder [2]  

 

G. Attention 

Attention mechanism is a component in neural networks 

that enable models to focus on specific parts of the input data. 

Spatial attention, on the other hand, refers to a mechanism that 

allows models to selectively focus on specific spatial regions 

or locations in the input data. Self-attention refers to an 

attention mechanism that connects positions within a sequence 

to generate a representation of that sequence [3]. Spatial 

attention is especially useful to be applied on image data. 

Within CNNs, attention assists in focusing on specific image 

regions, allowing the network to work on that region more 

attentively. 

III. MODEL IMPLEMENTATION 

There are three stages to build the final model. First, we 
need to acquire the dataset. Second, code the model and define 
the architecture. And lastly, evaluate the model visually and 
computationally.  

A. Dataset 

Define abbreviations and acronyms the first time they are 
used in the text, even after they have been defined in the 
abstract. Abbreviations such as IEEE, SI 

The dataset used for this experiment is beans dataset taken 
from hugging face. The dataset contains bean leaf images with 
images of healthy and diseased bean leaves. The training 
dataset contains 1295 images with each image is 500 by 500 
pixels. Before going into the model, we need to preprocess the 
data first with the following code. 

from datasets import load_dataset 

 

dataset = load_dataset("beans") 

 

image_paths = 

dataset['train']['image_file_path'] 

 

def load_images(paths, target_size=(100, 

100)): 

    images = [] 

    for path in paths: 

        img = Image.open(path).convert('L') 

        img = img.resize(target_size) 

        img = np.array(img) 

        img = img.astype('float32') / 255.0 

        images.append(img) 

    return np.array(images) 

 

images_np = load_images(image_paths, 

target_size=(500, 500)) 

 

autoencoder.fit(images_np, images_np, 

epochs=10, batch_size=32, shuffle=True) 

 

B. Model 

The main model architecture consists of encoder and 
decoder. But we train it altogether within a single training 
procedure. The developed model architecture is in figure 6. 

 

Figure 6. Model Architecture 
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The architecture as well as the code is as follows:  

input_img = Input(shape=input_shape) 

 

x = Conv2D(32, (3, 3), activation='relu', 

padding='same')(input_img) 

x = MaxPooling2D((2, 2), padding='same')(x) 

x = Conv2D(16, (3, 3), activation='relu', 

padding='same')(x) 

encoded = Conv2D(1, (3, 3), 

activation='relu', padding='same')(x) 

 

attention = Conv2D(1, (3, 3), 

activation='sigmoid', 

padding='same')(encoded) 

attention = UpSampling2D((2, 2))(attention)  

 

def resize_attention(x): 

    return tf.image.resize(x, 

(K.int_shape(encoded)[1], 

K.int_shape(encoded)[2])) 

 

inverted_attention = Lambda(lambda x: 1 - 

x)(attention) 

resized_attention = 

Lambda(resize_attention)(inverted_attention) 

 

encoded_attention = Multiply()([encoded, 

resized_attention]) 

 

x = Conv2D(16, (3, 3), activation='relu', 

padding='same')(encoded_attention) 

x = UpSampling2D((2, 2))(x) 

decoded = Conv2D(1, (3, 3), 

activation='sigmoid', padding='same')(x) 

 

autoencoder = Model(input_img, decoded) 

autoencoder.compile(optimizer='adam', 

loss='binary_crossentropy') 

 

 

The encoder architecture consists of three convolutional layers 
and a single max pooling layer. The decoder has two 
convolutional layers and a single up sampling layer. Between 
the encoder and the decoder, there is an attention mechanism to 
capture the features of the image with convolutional layer, and 
then multiply it with the encoded features before feeding it to 
the decoder. 

C. Training 

Training the model requires a simple step using the whole 

dataset as the training data. Because of the limitations of the 

hardware we use, we set the epochs to 10 epochs and batch 

size of 32.  

autoencoder.fit(images_np, images_np, 

epochs=10, batch_size=32, shuffle=True) 

 

 

 

IV. EXPERIMENTS RESULT 

A. Test Result 

At each epoch of the training procedure, the model 

produced around 0.6 of loss. The achieved loss metric 

indicates that the autoencoder successfully minimized the 

difference between the reconstructed images and the original 

input images. An example of using the training data as input is 

in the following figures. 

 
Figure 7. Original Test Image 
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Figure 8. Compressed Test Image 

 

 
Figure 9. Difference Between Original and Compressed 

 

From the figures, we can see that the image produced has 

different depths of compression. In the difference image, we 

can see that some areas are darker than the others indicating 

that some areas are compressed more than the lighter areas. 

The compression ratio of the above compressed image 

acquired from the compression process is 58.9 percent, with 

the details in figure 10. 

 
Figure 10. Compression Ratio of Test Image 

For more comparison, we can take the output of only the 

encoder before feeding it into the decoder. 

 
Figure 11. Encoded Image 

As we know, the encoder gives a lot of compression ratio 

compared to the final output of the decoder. The compression 

ratio of the encoding process is as follows. 

 
Figure 12. Compression Ratio of Encoded Image 

But we can see that the image is not similar at all compared to 

the original image. In fact, it is almost a completely different 

image. Now if we compare between the attention map and the 

difference image, we can see that the two of them correlates to 

each other.  
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Figure 13. Attention Map 

 

B. Compression Size 

To further test the performance of the model, we tested it on 

test data with128 images and computes the average of the 

compression ratios. We got an average of 68.49 percent of 

compression ratios. 

 
Figure 14. Average Compression Ratios 

 

V. CONCLUSION 

In this experiment, we implemented an autoencoder model, 
featuring encoder, decoder, and an attention mechanism in 
between. Experimental results show that the autoencoder can 
be used as a compression method. The selective mechanism 
provided by the attention in the model gives selective focus on 
the reconstruction procedure. In the compression test, we show 
that the compression rate mean is around 68 percent.To 
enhance further experiment, a more complex model 
architecture might perform better as it is able to explore deeper 
into the image. Additionally, exploring regularization 
techniques and different attention mechanisms could 
potentially refine the selective compression.  

CODE REPOSITORY 

The implementation of CNN-Attention autoencoder can be 
accessed at the following link : 

https://colab.research.google.com/drive/1l41fXKYSPPv99csG
cTb6-6HkeDDtf_Vr?usp=sharing 
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