
Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2023/2024

CNN-Attention Autoencoder for Image Compression

Ilham Prasetyo Wibowo (13520013)

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail) : 13520013@std.stei.itb.ac.id

Abstract— Image compression is the process of reducing the

size of an image without compromising its quality significantly.

Image compression is crucial for data transmission and

managing data size. This paper explores the use of a CNN-

Attention autoencoder, to selectively reduce the size of an image

to lower size but maintaining more quality in some areas.

Keywords—Image, CNN, Attention, Compression

I. INTRODUCTION

In this digital era, the growth of visual data, especially
images, has given rise to the challenges associated with storage
and processing. The volume of image data imposes a
significant burden on storage capacities. Image compression is
a technique to efficiently manage image size by reducing
image size but not losing too much information of the image.

Deep learning is a type of machine learning algorithm
which consists of interconnected multiple layers.
Convolutional Neural Networks (CNNs) is a type of deep
learning with the ability to process grid-like data. Hence,
CNNs are effectively used for image related tasks. The notable
difference between CNNs and ANNs is CNNs are primarily
used for learning patterns within images [1].

Autoencoders are a specific type of neural network,
designed to encode the input into a compact and meaningful
representation, and then decode it back to the input [2].
Autoencoders facilitate unsupervised learning and capturing
the main features of an input, providing means to enable it as a
compression method for images.

The CNN-Attention autoencoder is a model to capture the
features of the image and reconstruct it back to its original
representation. The additional attention mechanism contributes
to selectively emphasizing some areas to perform more
compression and other areas with less quality reduction. The
idea is simple, first we encode the image into its compact
representation, then use the attention mechanism to emphasize
some parts of the image, and finally approximately reconstruct
the image.

II. THEORETICAL BACKGROUND

A. Digital Image

Images we see in the real world are analog visual
information that our brain perceives. Digital images are
representation of images in discrete form. Digital images

comprised of pixels where each pixel holds the color
information. Images are usually represented in two-
dimensional grids. Pixels are the fundamental building blocks
of images. They can represent a lot of information depending
on the image. Following this, images usually hold a lot of
information resulting in a higher burden for storing the image.

B. Image Compression

Image files, especially high-resolution ones, contain vast
amounts of data. Storing such data requires significant storage
space. Image compression addresses that problem by reducing
the size of the image without losing significant quality. The
goal of image compression is to reduce spatial storage needs
and represent images with near similar quality but with more
compact representation.

Applications of image compression is as follows:

1. Reducing the storage needed to store the image in the
secondar storage.

2. Reducing the cost of transmitting images in data
communication.

There are two primary types of image compression:

1. Lossless compression

This compression method retains all information of
the image, pixel-by-pixel when compressing the file.
It uses algorithms to remove the redundancy without
losing any loss of information.

2. Lossy compression

This type of compression reduces file size by losing
some information of the data. Lossy compression can
get a very low compression ratio compared to lossless
compression methods. But, this method loses some
quality from the image.

There are lots of different compression algorithms. Some
compression algorithms frequently used in the image
compression are as follows:

1. Huffman Encoding

This method is an example of a lossless compression
algorithm. It is based on the greedy algorithm. At its
core, Huffman encoding algorithm encodes the
frequently showed pixel with smaller bit length, and
fewer bit length for other pixel values progressively.

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2023/2024

2. Run Length Encoding

The run length encoding method is another common
example of lossless compression algorithm. It
represents the image as value pairs of pixel value and
the length of the pixel present in the image
continuously.

3. Joint Photographic Experts Group (JPEG)

JPEG is a standard compression algorithm for images
since 1992. It is a type of lossy compression algorithm.
JPEG compression contains a lot of stages including
quantization, DCT, and Huffman encoding.

C. Neural Networks

Neural Networks are type of machine learning algorithms

which consists of many simple, connected processors called

neurons [2]. Each of the neurons produces real activations.

The neural network architecture is inspired by how the human

brain works. In neural networks, the model learns by flowing

the information from the input layer to the output layer in a

progressive way. After obtaining the output, it performs a

backward computation to adjust the weights of the neurons.

The backward computation is called backpropagation.

Deep learning is a type of machine learning that uses

multiple layers (hence the name deep) to extract features and

learn the information from the input. Deep learning models

can have hundreds of layers within a model.

D. Deep Learning for Computer Vision

Deep learning is a suitable architecture for computer vision

tasks such as image classification, recognition, or object

detection. It is suitable for computer vision due to following

reasons:

1. Easy access to large, labeled dataset.

2. Availability of highly performant GPU to increase

computing power.

3. There are pretrained models built by experts.

E. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are popular deep

learning algorithms, mainly used for inputs with grid-like

topology. One of the examples of grid-like topology input is

image. CNNs are an architecture for deep learning that learns

directly from input data utilizing filters, discarding the need of

manual feature extraction.

Figure 1. CNN in Image Classification [4]

CNNs mainly comprised of three main elements,

convolutional layers (including activation functions), pooling

layer, and fully connected layer. Convolutional layer performs

convolution to the input image with some defined filters. Each

filter produces a single feature map. We can change some

hyperparameters that affect the output feature map with

number of filters, stride, and padding.

Figure 2. Illustration of Convolution [4]

Pooling layers also performs convolution on the image.

But, in the pooling layer, there is no filter used to convolve.

Instead, it reduces the size of the input by some defined

parameters. There are two types of pooling:

1. Max pooling, returning the maximum value within a

window kernel.

2. Average pooling, returning the average value within

the window kernel.

Figure 3. Pooling Illustration [4]

The convolutional layers and pooling layers are mainly used

for feature extraction. To classify images, CNNs used fully

connected layers. The overall architecture of CNNs is

illustrated in the following figure.

Figure 4. CNN General Architecture [1]

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2023/2024

F. Autoencoders

Autoencoders are a specific type of neural network,

designed to encode the input into a compact and meaningful

representation, and then decode it back to the input [2].

Autoencoder consists of an encoder and decoder, working

together to reconstruct input data.

Autoencoder models are trained with unlabeled data. In

image case, it can train with only images without any

supervision required. It performs encoding to a compact

representation of the input, then performs decoding to

reconstruct the input. In the training procedure, it compares

the output of decoding and the input, then computes some

training loss, and updates its weights. Autoencoders can be

used as compression method by learning image’s compressed

representation. One of the examples of autoencoders is

denoising autoencoders. The example of denoising

autoencoders is in the following figure.

Figure 5. Denoising Autoencoder [2]

G. Attention

Attention mechanism is a component in neural networks

that enable models to focus on specific parts of the input data.

Spatial attention, on the other hand, refers to a mechanism that

allows models to selectively focus on specific spatial regions

or locations in the input data. Self-attention refers to an

attention mechanism that connects positions within a sequence

to generate a representation of that sequence [3]. Spatial

attention is especially useful to be applied on image data.

Within CNNs, attention assists in focusing on specific image

regions, allowing the network to work on that region more

attentively.

III. MODEL IMPLEMENTATION

There are three stages to build the final model. First, we
need to acquire the dataset. Second, code the model and define
the architecture. And lastly, evaluate the model visually and
computationally.

A. Dataset

Define abbreviations and acronyms the first time they are
used in the text, even after they have been defined in the
abstract. Abbreviations such as IEEE, SI

The dataset used for this experiment is beans dataset taken
from hugging face. The dataset contains bean leaf images with
images of healthy and diseased bean leaves. The training
dataset contains 1295 images with each image is 500 by 500
pixels. Before going into the model, we need to preprocess the
data first with the following code.

from datasets import load_dataset

dataset = load_dataset("beans")

image_paths =

dataset['train']['image_file_path']

def load_images(paths, target_size=(100,

100)):

 images = []

 for path in paths:

 img = Image.open(path).convert('L')

 img = img.resize(target_size)

 img = np.array(img)

 img = img.astype('float32') / 255.0

 images.append(img)

 return np.array(images)

images_np = load_images(image_paths,

target_size=(500, 500))

autoencoder.fit(images_np, images_np,

epochs=10, batch_size=32, shuffle=True)

B. Model

The main model architecture consists of encoder and
decoder. But we train it altogether within a single training
procedure. The developed model architecture is in figure 6.

Figure 6. Model Architecture

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2023/2024

The architecture as well as the code is as follows:

input_img = Input(shape=input_shape)

x = Conv2D(32, (3, 3), activation='relu',

padding='same')(input_img)

x = MaxPooling2D((2, 2), padding='same')(x)

x = Conv2D(16, (3, 3), activation='relu',

padding='same')(x)

encoded = Conv2D(1, (3, 3),

activation='relu', padding='same')(x)

attention = Conv2D(1, (3, 3),

activation='sigmoid',

padding='same')(encoded)

attention = UpSampling2D((2, 2))(attention)

def resize_attention(x):

 return tf.image.resize(x,

(K.int_shape(encoded)[1],

K.int_shape(encoded)[2]))

inverted_attention = Lambda(lambda x: 1 -

x)(attention)

resized_attention =

Lambda(resize_attention)(inverted_attention)

encoded_attention = Multiply()([encoded,

resized_attention])

x = Conv2D(16, (3, 3), activation='relu',

padding='same')(encoded_attention)

x = UpSampling2D((2, 2))(x)

decoded = Conv2D(1, (3, 3),

activation='sigmoid', padding='same')(x)

autoencoder = Model(input_img, decoded)

autoencoder.compile(optimizer='adam',

loss='binary_crossentropy')

The encoder architecture consists of three convolutional layers
and a single max pooling layer. The decoder has two
convolutional layers and a single up sampling layer. Between
the encoder and the decoder, there is an attention mechanism to
capture the features of the image with convolutional layer, and
then multiply it with the encoded features before feeding it to
the decoder.

C. Training

Training the model requires a simple step using the whole

dataset as the training data. Because of the limitations of the

hardware we use, we set the epochs to 10 epochs and batch

size of 32.

autoencoder.fit(images_np, images_np,

epochs=10, batch_size=32, shuffle=True)

IV. EXPERIMENTS RESULT

A. Test Result

At each epoch of the training procedure, the model

produced around 0.6 of loss. The achieved loss metric

indicates that the autoencoder successfully minimized the

difference between the reconstructed images and the original

input images. An example of using the training data as input is

in the following figures.

Figure 7. Original Test Image

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2023/2024

Figure 8. Compressed Test Image

Figure 9. Difference Between Original and Compressed

From the figures, we can see that the image produced has

different depths of compression. In the difference image, we

can see that some areas are darker than the others indicating

that some areas are compressed more than the lighter areas.

The compression ratio of the above compressed image

acquired from the compression process is 58.9 percent, with

the details in figure 10.

Figure 10. Compression Ratio of Test Image

For more comparison, we can take the output of only the

encoder before feeding it into the decoder.

Figure 11. Encoded Image

As we know, the encoder gives a lot of compression ratio

compared to the final output of the decoder. The compression

ratio of the encoding process is as follows.

Figure 12. Compression Ratio of Encoded Image

But we can see that the image is not similar at all compared to

the original image. In fact, it is almost a completely different

image. Now if we compare between the attention map and the

difference image, we can see that the two of them correlates to

each other.

Makalah IF4073 Interpretasi dan Pengolahan Citra, Semester I Tahun 2023/2024

Figure 13. Attention Map

B. Compression Size

To further test the performance of the model, we tested it on

test data with128 images and computes the average of the

compression ratios. We got an average of 68.49 percent of

compression ratios.

Figure 14. Average Compression Ratios

V. CONCLUSION

In this experiment, we implemented an autoencoder model,
featuring encoder, decoder, and an attention mechanism in
between. Experimental results show that the autoencoder can
be used as a compression method. The selective mechanism
provided by the attention in the model gives selective focus on
the reconstruction procedure. In the compression test, we show
that the compression rate mean is around 68 percent.To
enhance further experiment, a more complex model
architecture might perform better as it is able to explore deeper
into the image. Additionally, exploring regularization
techniques and different attention mechanisms could
potentially refine the selective compression.

CODE REPOSITORY

The implementation of CNN-Attention autoencoder can be
accessed at the following link :

https://colab.research.google.com/drive/1l41fXKYSPPv99csG
cTb6-6HkeDDtf_Vr?usp=sharing

ACKNOWLEDGMENT

The author wants to express gratitude to Allah SWT for His
blessings, grace, and mercy enabling the competition of this
paper. Sincere appreciation is also extended to Mr. Rinaldi
Munir for invaluable guidance during the IF4073 Image
Interpretation and Processing course. Furthermore, the writer
conveyed heartfelt thanks to those whose encouragement and
assistance contributed to this paper.

REFERENCES

[1] K. O'Shea and R. Nash, "An Introduction to Convolutional Neural
Networks," arXiv:1511.08458 [Online]. Available:
https://arxiv.org/abs/1511.08458.

[2] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders”, arXiv:
2003.05991 [Online]. Available: https://arxiv.org/pdf/2003.05991.pdf.

[3] A. Vaswani et al., "Attention Is All You Need," arXiv:1706.03762
[cs.CL], Jun. 2017. [Online]. Available:
https://doi.org/10.48550/arXiv.1706.03762.

[4] R. Munir, Slide Kuliah IF4073 Interpretasi dan Pengolahan Citra,
[Online]. Available: informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2023-
2024/citra23-24.htm.

STATEMENT

I hereby declare that the paper I have written is my own work,

not a translation or reproduction of someone else's paper, and

it is not plagiarized.

Bandung, 19 December 2023

Ilham Prasetyo Wibowo 13520013

https://colab.research.google.com/drive/1l41fXKYSPPv99csGcTb6-6HkeDDtf_Vr?usp=sharing
https://colab.research.google.com/drive/1l41fXKYSPPv99csGcTb6-6HkeDDtf_Vr?usp=sharing
https://arxiv.org/abs/1511.08458
https://arxiv.org/pdf/2003.05991.pdf
https://doi.org/10.48550/arXiv.1706.03762
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2023-2024/citra23-24.htm
https://informatika.stei.itb.ac.id/~rinaldi.munir/Citra/2023-2024/citra23-24.htm

